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The effect of anharmonicity on the non-radiative transition in large molecules is examined within
the Morse potential surface model. The vibrational wavefunctions are assumed to be the product of
the harmonic and Morse oscillator wavefunctions. The method of factorization introduced by Gelbart
et al. is used for the evaluation of a density weighted Franck-Condon factor. As an example, we choose
the intersystem crossing *B,,—'4,, in benzene. The numerical calculation shows that the anhar-
monicity causes an increase by a numerical factor ~ {0® in the non-radiative transition rate. The
electronic energy distribution over the vibrational modes in the final state is determined and compared
with that obtained using the harmonic potential surface model.
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1. Introduction

Although a considerable amount of theoretical investigations on intramole-
cular non-radiative transitions has been made and various formulas for the
non-radiative transition rate have been proposed, there have so far been few
actual calculations of the absolute non-radiative transition rates in a particular
molecule which allow a direct comparison with the available experimental data.
It seems that there remain many problems which must be clarified from the
theoretical point of view in order to obtain the absolute non-radiative transition
rates. The problem of effects of anharmonicity on the non-radiative transition
is the important one among these problems.

Burland and Robinson {1] have calculated the non-radiative transition rates
for the internal conversion between the !B,,(S;) and 4, 4(So) states and the
intersystem crossing between the *B,,(T;) and '4,,(S,) states in benzene and
deuterobenzene using a so-called density of states model. They assumed both
harmonic and anharmonic vibrational potentials. The anharmonicity was
restricted to either cubic or quartic terms in the potential energy. The large
polyacenes have a large number of accepting modes operating effectively and we
can calculate the rate using such a model. In the case of the molecules classified
as the intermediate case like benzene, however, the number of accepting modes to
be considered is restricted and the density of states model is not expected to give
satisfactory results.

Nitzan and Jortner [2] have also calculated the relaxation rate for the
*B,,— ', intersystem crossing in benzene and deuterobenzene using a dynamic
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model. In their treatment, the vibrational wavefunctions were approximated by
the harmonic oscillator wavefunctions.

Fischer’s [3] is the only theory of non-radiative transition rate in which the
inclusion of the effects of anharmonicity is attempted within the dynamical model.
However, the theory was criticized from the viewpoint of unjustified expansion
of the generating function [2]. Furthermore, he considered only cubic anhar-
monicity [4].

In this paper, we attempt to circumvent these difficulties by the use of Morse
potentials. We neglect the anharmonic coupling between normal modes. The
method of factorization introduced by Gelbart et al. [ 5] for the evaluation of the
density weighted Franck-Condon factor is used to examine the effect of anhar-
monicity on the non-radiative transition. We also determine the electronic
energy distribution over the different normal modes and discuss the validity
of the most probable path method. As an example we choose the intersystem
crossing *B,,—'A4,, in benzene since in this case all the parameters needed in
determining the Franck-Condon factors are well known and we can easily compare
the results with the experimental information.

2. The Non-Radiative Transition Rate

In the statistical limit the non-radiative transition rate from the vibrationless
state of the electronic state s, [so), to the manifold of the vibronic states, {|/j)},
can be written in the form of the Fermi golden rule [6]

W= Q@u/h) 3 [V | 50| (B, — Ey)), (1)

where V is the interaction Hamiltonian. Assuming that the vibrational modes
are mutually independent we employ the partitioning technique to separate any
modes of interest from other modes and rewrite Eq. (1) as follows:

W =(1CAP /1) 3. K01 [0 -+ [Kui] 03| ITA E], @

{vi}
where CZ is the electronic coupling matrix element induced by the promoting
mode » and v; is the vibrational quantum number of the separated mode i. The
integral 1[4 E], which corresponds to a density weighted Franck-Condon factor
for the remaining vibrational modes, is given by

I[AE]= | dif(t)exp(—idEt/h), (3a)
where AE=AE +3hY (0, — o) — 3 vhoy (3b)
d ! "
o Fo=r£o T £ (30)
JFx, (i}

AE° is the energy difference between the potential minima of the two electronic
states and w,; and @,; are vibrational frequencies of the /™ mode in the initial
and final electronic states, respectively. The generating functions for »'* and ;'



Non-Radiative Transitions in Polyatomic Molecules 79

modes are given by

and L&) =BE[A4, 0O explio,,t), (4a)
- £(6)= 4,0)exp [~ H,(0)] (@)
A,(0)= {ﬁ Gl ﬁ) [1— exp(2iahjﬂ]} B (5a)
and ﬁ A2[1 — expioo, 1)]
H;@0)= 1+J[3jj—l—(ﬁj—1)exp(1iw,jt) ’ (b)
where M N
Aj=6-%ﬂ% 49;. (50)

Th? parameter's,.A. Qi(= Q; ;— Qf) and f;, indicate the displacement and frequency
ratio between initial and final states.

3. The Intersystem Crossing 3B,,—'A4, , in Benzene

For the intersystem crossing *B,,— ' 4, , in benzene, the C-H and C—C totally
symmetric stretching modes and the b,, out-of-plane mode (w;;,, =705 cm™?)
are considered as effective accepting modes. In this case, totally symmetric modes
have non-zero diaplacement between the two electronic states' and the b,,
out-of-plane mode has the largest frequency change?. We separate the C—H and
C—C totally symmetric stretching modes from the b, , mode, since anharmonicities
of the former are considered to be markedly effective as compared with that of
the latter. Thus, Eq. (1) is transformed as follows:

W s, = (i T1s So |2/h2) Z Z |<U1 |0>iz
\ , v1 U2 ) ( 6)
X [va|0)|* - ITAE*(by,)],

where v, and v, are the vibrational quantum numbers « “the C—H and C—C totally
symmetric modes in the final electronic state, S,, and AE*(b,,) is the effective
energy gap to be accepted by the b,, mode. Also we neglect the frequency change
for the nontotally symmetric promoting mode, the b,, C—C stretching mode,
and the integral I[4E(b, )] is given by

ILAE (b))l = _}O dt fp,, (exp[~iAE*(b,,)t/h], 7

AE*(by)=AE — hoy,,.

where

Thus, the effects of anharmonicity can simply be accounted for by pulling
out the Franck-Condon factors of C-H and C-C totally symmetric modes®.
However, since the effective energy gap 4E*(b,,) may be small because of the
possible large energy acceptance of the separated modes, we must evaluate the
vibrational integral Eq. (7) exactly. The density weighted Franck-Condon factor

! In this paper we neglect the displacement of the e, , mode.

2 Ifit is proved that the b,, mode is more effective accepting mode than totally symmetric modes,
other distorted modes must be considered. In general, however, the C-H totally symmetric mode is the

most effective accepting mode.
3 Only totally symmetric modes act as Morse oscillators.
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for the b,, mode whose potential is considered to be distorted can be written as
follows: { 1—8 >AEk(b2g)/ﬁwmg

ITAE*(b,,)]= (275%/0)11725,) (m) (m
I'[1/2+ AE*(by,)/2hw 15, ]

T+ AE*(b,,)/2hwyy, ]

®)

4. Evaluation of Franck-Condon Factors Using the Morse Function

In order to evaluate the Franck-Condon factors of the totally symmetric
vibrational modes, we assume that the potential curves of the two electronic
states are in the form of the Morse potential

Unu(Ru):Dn/.t{l —exp[—anu(Ru—RZﬂ)]}z . (9)
Here D, is a dissociation energy and «,, is a constant referred to the y-th mode
in the electronic state n. The corresponding vibrational wavefunction y,, takes
the following form [7]:

Oy (Ko — 20, — 1) ]2 o
- - Z K= 200,=1)/2
o [ U"U!F(Knu-v,,u) eXp( Znu/z) nu

(10)

s v r'K,,—v
% _1 k+vp,[ Bl nu nu Z vnu-k’
£ ) gy oy o
where I'(x) is the gamma function and Z,, =K, ,exp[ —«,,(R,— R;,)]. K,, and
D,, are related to the constants appeared in the expression for the vibrational
energy

Enu(vnﬂ) = hwnu(vnu + %) - hwnuxn,u (vnu +%)2 » (1 la)

hw (hoo,,)? n?
K,,=——", D,=——"—, h = %o (11D
T W, , Xy, " dhw,,x,, Onu X dneM,, s (110)

where M, is the effective mass and w,,Xx,, is the anharmonic parameter of the
uth normal mode in the n electronic state. The vibrational overlap integral
between the initial and final electronic states, s and [, is

S(vsw vlu}:deaX?;Xsu7 (123)
and the Franck-Condon factor is
F(Us;u Ulu)zls(vsusvlu)lza (12’b)

where v,, and v, are the vibrational quantum numbers of the ;th mode in the s
and [ electronic states, respectively. Since for o, # a,, the integral in Eq. (12a)
cannot be performed analytically, it is necessary to resort to an approximate
analytical formula for the overlap integral. The approximation used by Mak-
shantsev and Pertnev [8] is to replace the potential of the initial electronic state
by the potential
U(R)=D'{1 —exp[ -, (R, — R}, (13a)-

D' = Dw(ocm/oc,u)2 . (13b)

K =K,,@,,/0,) . (13¢)

where

Then, we have
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It is possible to examine the error caused by the replacement of Eq. (9) by Eq. (13a);
Egs. (9) and (13a) can be expanded as follows:

Usu(Ru)ZDsuasi(Ru~Rg,u)2 - si(R —'RO )3 (143)
Usu(Ru)zDsuocsi(Ru—R‘s’u)z—D oc,u(R —R¢ u)3 . (14b)

The first term of Eq. (14b) is just that of Eq. (14a). The expansion coefficients in
Eq. (14b) involve the power of «;, except for the first term. The deviation of the
approximate potential from the original one is larger in higher terms than in
lower terms.

Further Makshantsev and Perstnev assumed that the main contribution to
the sum in Eq. (10) is made by terms with small k or with k values close to v,,
However, this approximation gave satisfactory results only for the case in which
the difference of frequency is large between the initial and final electronic states.
In the case of small frequency changes (observed generally in polyatomic molecules),
we must sum every terms.

The integration in Eq. (12a) gives the expression:

(K'—2v5, — 1) (K,;, — 20, — 1) |
S(Ususvtu): l ‘u 173 :u )
Us#. Dlu'
x (— 1)y rmexp[— oy, 40Q,(K,, —1)/2]

~ (K/)(K’ —-1)/2 (Km)(Klu)/Z

( ) (K~ K1 — 2)/2
X

K'+ K, exp(—a;,A Qu))
e ()

x exp(k'a;, 4Q,)(K")” k(Kl”)—k' (15a)

2 (k+k)
x !
(K +Klpexp(_al,uAQu))

1 1
X
[F(K/_vsy)r(Klu_ulu)}
F(K,'_—Usu) F(Klu_vlu)
'K —v,,—kyI'K,;, —v;, — k)
x I([K' +K,, — 2k— 2K — 21/2),
4Q,=R;,—R},. (15b)

The anharmonic parameter for the initial state vanishes in Eq. (15a) because K’
is written as follows:

K, = Ksu(asu/o‘lu)z = (hwsu/hwsuxsu) (hwspxsu/hwluxlu)

= (hog,/hawy,x,,) .

X

where

(16)

The parameters necessary for calculating the Franck-Condon factors are thus
reduced to K, K, a;,, and 4Q,. It is a marked characteristic of our method
that the anharmonic parameter is necessary only for the lower electronic state.
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Table 1. Franck-Condon factors for the A> £ — X? IT transition in the NO molecule®

b
Usy

0 1 2 3
vy M‘
0 0.16139 0.32236 0.28914 0.15472
0.163450¢  (0.32560) (0.29009) (0.15275)
1 0.26290 0.10856 0.01107 0.17687
(0.26351) {0.10683) ©0.01279) {0.18377)
2 0.23948 0.00046 0.15143 0.05540
(0.23900) (0.00064) (0.15308) (0.05176)
3 0.16230 4.07098 0.07883 0.03163
(0.16159) {0.07209) {0.07667) (0.03480)
4 0.09160 Q13611 0.00093
(0.09110) (0.13629) (0.00064)
5 0.04572 0.13608 0.03340
(0.04546) (0.13540) (0.03467)
6 0.02094 0.10011 0.08941
(0.02082) (0.09928) (0.09007)
7 0.00901 0.06135 0.10781
(0.00897) (0.06072) (0.10741)
8 0.00371 0.03332 0.05180
{0.00369) (0.03294) {0.09090)
9 0.00148 0.01665 0.06387
0.00147) {0.01644) {0.06298)
10 0.00058 0.00783 0.03892
(0.00057) (0.00772) (0.03826)
8! 4.00022 3.00353 002163
(0.00022) (0.00347) (0.02121)
12 0.00008
(0.00008)
13 0.00003
(0.00003)

¢ Eq (iSa) with the following parameiers [9]: w,, =23713 em™', o, x, =1448 cm™, w,

=19039 em™, X, = 1397 cm™ %, 4Q, =0.0871 A, o, =2489 A7, K, =136,
b Vibrational quantum number in 4* X state.
° Vibrational quantum number in X2 IT state.
4 Values of the Franck-Condon factor, taken from [9], are given in parentheses.

5. Results and Discussion

In order to examine the validity of the present method, we first calculate
Franck-Condon factors for the A?X —X? IT transition in the NO molecule using
Eq. (15a). Assuming a Morse potential, Ortenberg has calculated the Franck-
Condon factors for this transition by the numerical integration. The present
results obtained using the same parameter values as used by Ortenberg are given
in Table 1, together with the previous results. The Franck-Condon factors are in
good agreement with those calculated by the numerical integration. We notice
that Eq. (15a) obtained with the approximate potential Eq. (13a) is applicable
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Fig.1. Dependence of relative Franck-Condon factors on displacement. Results obtained using Eq. (15a)

with the following parameters: @, =3063 cm™', w,, =3130cm™", 0, =0.714 A%, @, %, =9.2om™*.

F°(0,v,):4Q,= —00343 A, F(0,v,}1: 40, = —0.0269 A. F(0,v,,) I1: 40, = ~0.0416 A. F(0, v,,) IT:
40,=—0.0490 A. F(0,1,,) IV: 40, = —0.0563 A.

even to the cases in which the vibrational quantum numbers in the initial electronic
state are fairly large.

It is obvious from Eq. (15a) that for K'=K,,, the Franck-Condon factor
satisfies the following relation.

F(Us;uUlu;AQu)=F(vluavsu; _AQu)

That is to say, the Franck-Condon factors, F(v,,,v,,), and F(v,,, v,,), are equal,
when the displacements are equal in magnitude and opposite in sign.

In Figs. 1, 2, and 3, we display the dependence of the Franck-Condon factors
on the vibrational quantum numbers of the final state and, at the same time, on
the displacements, vibrational frequencies, and anharmonic parameters. We
choose the C—H totally symmetric mode in benzene as a relevant mode and vary
the parameter values around the reference ones corresponding to the 7; S,
transition. From these figures we can remark the following points about the
Franck-Condon factors of the Morse function.

1) The Franck-Condon factor depends on the displacement in a monotonous
manner (see Fig. 1).

2) Both the decrease in the initial state (see Fig. 2a) and the increase in the
final state (see Fig. 2d) of the vibrational frequency strongly influence the Franck-
Condon factor in a similar way. On the other hand, the increase in the initial
state (see Fig. 2b) and the decrease in the final state (see Fig. 2¢) affect the Franck-
Condon factor in a complicated manner.

3) The variation of the anharmonic parameter from 5.2 to 14.2 does not
produce a significant effect on the Franck-Condon factor (see Figs. 3a and 3b).



84 N. Shimakura et al.

100
FIOV, PO M)

1000

sV

FOM) ! 0,V /
1 /
.'d /9 m
.f'c.'-
1009 s

— Vl)-'

0.001 . 5

: s, s N . i

Fig.2b

Fig. 2a. Dependence of relative Franck-Condon factors on the vibrational frequency in the initial state.
Results obtained using Eq. (152) with the following parameters: w;,=3063 ¢cm™ 1, 4Q,=—00343 A, Oy
=0714 A~%, w;,x;, =92 cm ™% F°(0,1,,): 0,, =3130 cm ™ . F(0,1,,) I: 0, =3082 cm™ . F(0,v,,) II:

w0, = 3036 cm ™. F(0,v,,) I1I: ,, = 2990 cm~*. F(0, 1,,) IV: o, =2944 cm ™! .

Fig. 2b. Dependence of relative Franck-Condon factors on the vibrational frequency in the initial state.

Results obtained using Eq. (15a) with the following parameters: ¢, =3063 cm™!, 40, = —0.0343 A, o,

=0714 A", w,, %, =92 cm™ . F°(0, 1,,): 0,, = 3130 em ™ L. F(0, 3,,) I: o, = 3156 em ™ 1. F°(0, v,,) IT:

w,,=3174 cm ™. F(0,v;,) 1I: o, =3210 cm™*. F(0,1,) IV: w,,=3321 ecm™ ' F(0,vy,,) V: o,
= 3450 cm ™!

This means that the Franck-Condon factor is rather insensitive to the variation
of the value of the anharmonic parameter around the reference value. On the
other hand, the variation of the vibrational frequency gives a relatively remarkable
effect on the Franck-Condon factor.

We will now calculate the intersystem crossing rate from the vibrationless
level of the *B, , state to the ground state in benzene, using Egs. (6) and (8) for the
non-radiative transition rate and Egs. (12b) and (15a) for the Franck-Condon
factor of the Morse potential. We consider the b,, C-C stretching mode (w;,,
=1313 cm™ ') as the promoting mode. We use the same parameter values as
those used by Burland and Robinson except for anharmonic parameters of the
C-H totally symmetric mode. They analyzed the phosphorescence and fluores-
cence intensities of benzene in the crystal phase and found a value of w, x,
=12.6 cm™ ! for the anharmonic parameter of the C—H mode in the ground state.
The analysis of the infrared spectra by Henry and Siebrand suggests the value of
w;x; =92 cm™1. We feel that the latter is better. The anharmonic parameter
for the C—C breathing mode is found to be w,x,=1.28 cm™! in crystal phase
and w,x,=0.98 cm™! in gas phase by Burland and Robinson. These values are
fairly small, so that, in our calculation, the anharmonicity of the C—C breathing
mode is neglected.
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Fig. 2¢. Dependence of relative Franck-Condon factors on the vibrational frequency in the final state.

Results obtained using Eq. (15a) with the following parameters: wy, =3130 cm™, 40, = —0.0343 Ao,

=0.714 A™Y, w,,x, =92 cm™ L. F°(0,v,,): w;, =3063 cm™ 1. F(0,,,) I: @, =3027 cm™ ' F(0,v,,) I:

w;,=3008 cm™!. F(0, v,) II: w,,=2972 cm™'. F(0, v,) IV: w,,=2861 cm™'. F(0, 1) V: oy,
=2732cm™!

Fig. 2d. Dependence of relative Franck-Condon factors on the vibrational frequency in the final state.

Results obtained using Eq. (15a) with the following parameters: w,, =3130 cm™*, 4Q, = —0.0343 A, Oty

=0714 A~ p, %, =92 cm™ L F°(0,v,,): @, =3063 cm™ . F(0,v,,) I: @, = 3100 cm ™. F(0,v,,) II:
w,=3146 cm™ ', F(0,v,,) III: w;,=3192 em™*. F(0,v,,) IV: w,,=3238 cm™!

3
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Fig. 3a. Dependence of relative Franck-Condon factors on anharmonic parameters. Results obtained

using Eq. (15a) with the following parameters: w,,=3130cm™, w,,=3063cm™*, 40,=~0.0343 A.

Fo0,v,,): 0p,%,=92cm™ L F(0,0,) [, %, =82 cm™ % F(0,v,) IT: @, %, =72 cm™ . F(0,,,) I1I:
%, =62cm . F(O,v,)IV: 0, x,=52cm™*

Fig. 3b. Dependence of relative Franck-Condon factors on anharmonic parameters. Results obtained

using Eq. (152) with the following parameters: w,,=3130cm™, w,,=3063cm™!, 4Q,=—0343 A,

F°(0,v,,): 0y, %, =9.2cm™ L F(O, v ) Lw,x,=102ecm™. F(0,v,,)I: 0, x,, = 11.2cm™ LF(O, py,,) 111
WXy, =122 cm™ Y F(0,0,) IV: @y, %, =132 em™ L. F(0,v,,) V: 0y, %, =142 cm ™!
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Table 2. Contributions of the energy distributions in the final electronic state to the total non-radiative
transition rate®. Case 4: Harmonic oscillator approximation®

CH-T;° CC-T; Out-of-plane
vy [Cog]0p*° v K0,]0p)%¢ I'T4E(b,,)]"

Wr,~s,(sec™h)

8§ 529x1071® 3.53%x 1071t 6.30x 1073 1.77 x 1071
202x 1071 3.80x 1072 6.08x10°1°

8.14 x 1072 253 x 1071 1.63% 107°

844x1072 931 x107* 1.51 x 10710
260x 1072 531 x1073  275x1071°
699x 1077  320x 1072  445x {0710
.64 x 1073 210 x 1071 686x 107°

2.60x 1072 260 x 1073 .89 x 10710
699 x 1073 141 x107%  275x {0710
1.64%x 1073 7.92x107%  3.64x1071°
346 x 1074  451x1073  437x 10710
6.59 x 1073 271 x 1072 5.00x 10710
1.17 x 1073 1.75x 107 573x 10710
1.93x 10°° 1.48 7.99 x 10~ 1°

7 133x107'*

6 1.87x10"'2

-
OO0 H W OQOVWEIAME N R W W~

5 534x107'° 814x 1072  272x 1078 1.77 x 10710
2.60 x {072 143 %1077 298 x 10710
699x 1073  765x1077 428 x1071°
1.64x107%  412x10°%  540x1071°
346 x 1074 221 x 1073 6.11 x 10710
659 % 107° 121 x(07%  638x1071°
117x107%  676x107*%  632x1071°

10 193x10°%  3.82x107%  590x 10°1°
1 300x10"7 228x10"%2  S46x(0°'°
12 441 x 1078 147 x 1071 518 x 107 1°
13 620x107° 1.19 590 x 1071
Total 1.89 x 1078

2 The contributions smaller than 2% of the most effective one (corresponding to the most probable
path) are neglected.

® Every vibrational wavefunctions, C-H and C—C totally symmetric stretching mode and b,, out of

plane mode, are approximated by harmonic oscillator wavefunctions.

T, = carbon or hydrogen totally symmetric stretching mode.

Franck-Condon factors calculated by using Eq. (16) in reference [10] with the following parameters:

@,%=3063 cm™}, ;7' =3130 em™ ', 4Q; = —0.034 A, AE=29.658 crn™ .

Franck-Condon factors calculated by using Eq. (16) in reference [10] with the following parame ters:

@,%=990cm ™1, 0,7 =923 ecm™ !, 40, =0071 A,

IT4E(b:,] = 2n 202 I'TAE(b,)]

o a o

~

Comparing Table 2 with Table 3, we notice that the anharmonicity results
in an increase by a numerical factor ~ 3.7 x 10® in the calculated non-radiative
transition rate. It should be also noticed that, owing to the anharmonicity, the
C—H totally symmetric mode becomes more effective as the accepting mode.
The vibrational quantum numbers of the C—H totally symmetric and the C-C
breathing modes in the final state corresponding to the most probable path
are v, =7, v,=6 for the case of the harmonic oscillator approximation and
v, =38, v, =4 for the case of the Morse oscillator approximation.
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Table 3. Contributions of the energy distributions in the final electronic state to the total non-radiative
transition rate?. Case B: Morse oscillator approximation®

CH-T* CC-T, Out-of-plane
vy [Ko,]0))*¢ v [Kop10p%¢ I'TAE(by )1

Wy, oso(sec™?)

9 1.057x 10712 0 329x107* 326 x 1072 170 x 10~¢
1 3.53x107" 214 % 107! 1.9 x 103

3.53 x 107! 1.35x 1073 1.32x10°¢
202x 1071 692x107% 388 x107°
814x 1071  422%x1072  954x10°©
2.60x 1071 2.83x 107! 204 %1073

202x107%  472x107°5 491 x 1077
8.14x 1072  263x107* 111 x10°°
260x 1072 {47x107% 198 x10°°¢
699%x107%  858x107%  3.42x107°

8 1.854x 107! 1
2
3
4
2
3
4
5
6 1.64x1073 5.21 x 1072 441 x10°°¢
7
5
6
7
8
9
0

7 3455x 107

3.46 x 1074 357x 107! 6.37x 1076

6 6.856x107° 699x 1073  554x107°  398x1077
1.64x 1073  305x107*  515x1077

3.64 x 107* {73 %1073 6.15x 1073

659x107%  994x107%*  672x1077

117 x 1075 6.20 x 1072 746%x 1077

10 1.93x {0~ 432x 1071 8.55x 1077

Total 7.00 x 1073

? The contributions smaller than 2% of the most effective one (corresponding to the most probable
path) are neglected.

® C-H totally symmetric stretching mode is approximated by the Morse oscillator wavefunction.
Other modes, the C-C totally symmetric mode and b,, out plane mode, are approximated by
harmonic oscillator wavefunctions.

¢ T,=carbon or hydrogen totally symmetric stretching mode.

¢ Franck-Condon factors calculated by using Eq. (152) with the following parameters: 3 = 3063 cm ™!
wl°=3130ecm™ Y, o xfo=92cm %, o, =0714 A~1, 40, = - 0034 A, AE=29658 cm™ .

¢ Franck-Condon factors calculated by using Eq. (16) in Ref. [10] with the following parameters:
@3 =990 cm *, wl'=923cm !, 4Q,=0071 A.

FI[AE(by )= Q') I TAE (D).

bag

3

Using the results of Table3 and assuming Cr, 5, =1.6x10""cm™ [1]
we may calculate the absolute rate for the *B,,—'4,, intersystem crossing in
the benzene molecule. Our numerical results together with previous ones are
summarized in Table 4. The value in parentheses corresponds to the rate obtained
considering only the most probable path. The numerical result obtained using
the most probable path method is about a fourth part of the value obtained
using the present method. The predicted results in Table 4 should be compared
with the experimental result Wy g ~24x 1072 According to Nitzan and
Jortner [2], the inclusion of frequency changes for other modes increases the
rate by an order of about 3. Considering this effect, we feel that our result is in
better agreement with the experimental one than any other calculated result
obtained previously. :
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Table 4. Calculated intersystem crossing rate in benzene

Rate (sec™ )

Present work 7.00 x 1073
(2.04 x 1075y
Nitzan and Jortner [2] 72 x 1077

Burland and Robinson [1] 9.04x 1073
Fischer and Schneider [11] 7.4 x107%
Experiment [1] 24 x 1072

* The value obtained from the most probable
path method.

In this paper we have neglected the displacement for the e,, mode. Fischer
and Schneider [11] have calculated the rate taking into account the displacement
of AQ=0.021 A for the e,, C—C stretching mode (1606 cm™!). The inclusion of
the displacement augments the rate by a numerical factor ~40. However, the
magnitude of the displacement for the e,, mode depends strongly upon solvents
and cannot been determined definitely. The semi-empirical calculation by Nieman
[12] shows that the displacement is less than 0.01 A.
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