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The effect of anharmonicity on the non-radiative transition in large molecules is examined within 
the Morse potential surface model. The vibrational wavefunctions are assumed to be the product of 
the harmonic and Morse oscillator wavefunctions. The method of factorization introduced by Gelbart 
et al. is used for the evaluation of a density weighted Franck-Condon factor. As an example, we choose 
the intersystem crossing aBlu~ 1Alg in benzene. The numerical calculation shows that the anhar- 
monicity causes an increase by a numerical factor ~ 103 in the non-radiative transition rate. The 
electronic energy distribution over the vibrational modes in the final state is determined and compared 
with that obtained using the harmonic potential surface model. 
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1. Introduction 

Although a considerable amount of theoretical investigations on intramole- 
cular non-radiative transitions has been made and various formulas for the 
non-radiative transition rate have been proposed, there have so far been few 
actual calculations of the absolute non-radiative transition rates in a particular 
molecule which allow a direct comparison with the available experimental data. 
It seems that there remain many problems which must be clarified from the 
theoretical point of view in order to obtain the absolute non-radiative transition 
rates. The problem of effects of anharmonicity on the non-radiative transition 
is the important one among these problems. 

Burland and Robinson [1] have calculated the non-radiative transition rates 
for the internal conversion between the 1B2,($1) and 1Alo(So) states and the 
intersystem crossing between the 3Bl,(T1) and 1Alo(So) states in benzene and 
deuterobenzene using a so-called density of states model. They assumed both 
harmonic and anharmonic vibrational potentials. The anharmonicity was 
restricted to either cubic or quartic terms in the potential energy. The large 
polyacenes have a large number of accepting modes operating effectively and we 
can calculate the rate using such a model. In the case of the molecules classified 
as the intermediate case like benzene, however, the number of accepting modes to 
be considered is restricted and the density of states model is not expected to give 
satisfactory results. 

Nitzan and Jortner [2] have also calculated the relaxation rate for the 
3Bt,,~ 1A1~ intersystem crossing in benzene and deuterobenzene using a dynamic 
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model. In their treatment, the vibrational wavefunctions were approximated by 
the harmonic oscillator wavefunctions. 

Fischer's [3] is the only theory of non-radiative transition rate in which the 
inclusion of the effects of anharmonicity is attempted within the dynamical model. 
However, the theory was criticized from the viewpoint of unjustified expansion 
of the generating function [2]. Furthermore, he considered only cubic anhar- 
monicity [4]. 

In this paper, we attempt to circumvent these difficulties by the use of Morse 
potentials. We neglect the anharmonic coupling between normal modes. The 
method of factorization introduced by Gelbart et al. [5] for the evaluation of the 
density weighted Franck-Condon factor is used to examine the effect of anhar- 
monicity on the non-radiative transition. We also determine the electronic 
energy distribution over the different normal modes and discuss the validity 
of the most probable path method. As an example we choose the intersystem 
crossing 3B1,,~ 1A~o in benzene since in this case all the parameters needed in 
determining the Franck-Condon factors are well known and we can easily compare 
the results with the experimental information. 

2. The Non-Radiative Transition Rate 

In the statistical limit the non-radiative transition rate from the vibrationless 
state of the electronic state s, [so), to the manifold of the vibronic states, {11j)}, 
can be written in the form of the Fermi golden rule [6] 

W~_~, = (2re/h) ~ I ( l j [  VI  so>l 2 6(E~o - Eta), (1) 
J 

where V is the interaction Hamiltonian. Assuming that the vibrational modes 
are mutually independent we employ the partitioning technique to separate any 
modes of interest from other modes and rewrite Eq. (1) as follows: 

w.. ,  = (I c 12/h 2) I(vl I o> 12... i<v, 10> i 21 [A El,  (2) 

where C~ is the electronic coupling matrix element induced by the promoting 
mode x and v~ is the vibrational quantum number of the separated mode i. The 
integral I [A El, which corresponds to a density weighted Franck-Condon factor 
for the remaining vibrational modes, is given by 

I [A E] = ~ d t f (t) exp ( -  i A Et/h) ,  (3 a) 

where - ~o 
A E = A E ~ + �89 Y' (cos1 -(nt i )  - Y', vlhahi, (3b) 

and j i 
f ( t)= f , ( t )  I-I f j( t) .  (3c) 

j ex , [ i}  

A E ~ is the energy difference between the potential minima of the two electronic 
states and ~osi and m,j are vibrational frequencies of the jth mode in the initial 
and final electronic states, respectively. The generating functions for n TM and j,h 
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modes are given by 
f~ (t) = fi~ [A~ (t)] 3 exp (icoz~ t), (4a) 

and 
fj(t) = As(t) exp [ -  Hi(t)] .  (4b) 

Here 

As(t) = flj + (1 - flj)2 [1 - exp(2icolst)] (5a) 
4 

and 
fljd 2 [-1 -- exp(icozst)] 

where 

Aj = A Qj. (5c) 

The parameters, A Qj(= Q ~ -  Ql~ and fls, indicate the displacement and frequency 
ratio between initial and final states. 

3. The Intersystem Crossing aBlu-+IA xg in Benzene 

For the intersystem crossing 3Blu--+ iAlg in benzene, the C - H  and C-C totally 
symmetric stretching modes and the b2g out-of-plane mode (eOtb2o = 705 cm-1) 
are considered as effective accepting modes. In this case, totally symmetric modes 
have non-zero diaplacement between the two electronic states ~ and the b2o 
out-of-plane mode has the largest frequency change 2. We separate the C - H  and 
C - C  totally symmetric stretching modes from the b E 0 mode, since anharmonicities 
of the former are considered to be markedly effective as compared with that of 
the latter. Thus, Eq. (1) is transformed as follows: 

wTl~so = ([ c L ,  so 12/h 2) ~ Y~ i<~, 10>i 2 
. . . .  (6) 

• i<~2 I0>12. i [A E~(b2o)], 

where vl and v2 are the vibrational quantum numbers,  ~the C - H  and C-C totally 
symmetric modes in the final electronic state, So, and A E~(b20) is the effective 
energy gap to be accepted by the b20 mode. Also we neglect the frequency change 
for the nontotally symmetric promoting mode, the b2. C-C  stretching mode, 
and the integral I [A E(b20)] is given by 

I[AE(b2g)] = ~f dt fb2,(t)exp[-- iAE~(b2o)t/h], (7) 
where - 0o 

A E~(b2o) = A E - h~ol~. 

Thus, the effects of anharmonicity can simply be accounted for by pulling 
out the Franck-Condon factors of C - H  and C-C  totally symmetric modes 3. 
However, since the effective energy gap A E"(b2o) may be small because of the 
possible large energy acceptance of the separated modes, we must evaluate the 
vibrational integral Eq. (7) exactly. The density weighted Franck-Condon factor 

In this paper we neglect the displacement of the e2o mode. 
2 If it is proved that the bag mode is more effective accepting mode than totally symmetric modes, 

other distorted modes must be considered, In general, however, the C H totally symmetric mode is the 
most effective accepting mode. 

3 Only totally symmetric modes act as Morse oscillators. 
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for the b2a 
follows: 

mode whose potential is considered to be distorted can be written as 

I[AE'(b2~176 1 - ~  \ l + fl J 
(8) 

F [1/2 + A E'(b2o)/2hco lb~.] 
• 

F [1 + A E~(b2o)/2hco~.] 

4. Evaluation of Franck-Condon Factors Using the Morse Function 

In order to evaluate the Franck-Condon factors of the totally symmetric 
vibrational modes, we assume that the potential curves of the two electronic 
states are in the form of the Morse potential 

Un. (R.) = D.u {1 - exp [ -  %~ (R u - R~ }2. (9) 

Here D..  is a dissociation energy and %u is a constant referred to the kt-th mode 
in the electronic state n. The corresponding vibrational wavefunction Z.u takes 
the following form [7] : 

[ % . ( K . . -  2 v . . -  1)] 1/2 , 
X"u=[ ~ . ~ . . i  J e x p t -  Z.u/2)Z(~"~-2vm~-1)/2 

(10) 
• 

r U s  - - Y 2  k ) ( z . . )  """ - k , 

where F(x) is the gamma function and Z.u = K.uexp [ - c ~ . . ( R . -  R~ K.u and 
D..  are related to the constants appeared in the expression for the vibrational 
energy 

E.u (v..) = he. . .  (v.. + 1) _ he).. x . .  (v.. + �89 (11 a) 

h 2 
hO)nu (h( 'Onu) 2 hco.ux.u_ 2 (l lb) 

K . . -  h c % . x . . '  D . u -  4hco, ux." , 4rccM. u %u' 

where M. .  is the effective mass and oo.ux.u is the anharmonic parameter of the 
p th normal mode in the n electronic state. The vibrational overlap integral 
between the initial and final electronic states, s and l, is 

S (vs. , v~u ) = S d Ru z*u Z~. , (lZa) 

and the Franck-Condon factor is 

V(vs., vl. ) = [ S(v~., vt.)]2 , (12b) 

where Vs. and v~. are the vibrational quantum numbers of the # th mode in the s 
and l electronic states, respectively. Since for esu #~tu the integral in Eq. (12a) 
cannot be performed analytically, it is necessary to resort to an approximate 
analytical formula for the overlap integral. The approximation used by Mak- 
shantsev and Pertnev [8-] is to replace the potential of the initial electronic state 
by the potential 

Us. (R.) ~ D' {1 - exp [ - c%(R. - Rs~ } 2 , (l 3a)" 
where 

D' = Dsu (c~Jcetu) 2 . (13b) 
Then, we have 

K' = K~u (a~Jc%) 2 . (13c) 
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It is possible to examine the error caused by the replacement of Eq. (9) by Eq. (13 a); 
Eqs. (9) and (13a) can be expanded as follows: 

_ _  2 o 2 3 o 3 U~u(Ru) -  D ~ u ~ u ( R u -  R~.) - R~u) + . . .  D~u cqu(R~ - (14a) 
U~u(Ru)~ 2 o 2 2 o 3 D~u%u(R u - R , . )  . . . .  (14b) Dsu~suOhu(R,-  Rs ,  ) + . 

The first term of Eq. (14b) is just that of Eq. (14a). The expansion coefficients in 
Eq. (14b) involve the power of ~zu except for the first term. The deviation of the 
approximate potential from the original one is larger in higher terms than in 
lower terms. 

Further Makshantsev and Perstnev assumed that the main contribution to 
the sum in Eq. (10) is made by terms with small k or with k values close to v.u. 
However, this approximation gave satisfactory results only for the case in which 
the difference of frequency is large between the initial and final electronic states. 
In the case of small frequency changes (observed generally in polyatomic molecules), 
we must sum every terms. 

The integration in Eq. (12a) gives the expression: 

[ (K' - 2Vs. - 1) (K,, - 2vl, - 1)_] ~ 
S(v~., I) 1#) ] 

x ( -  1)~'-+ V'-exp [ -o : tuA  Q u ( K t , -  1)/2] 
x (K') (~'- 1)/2 (Ktu)(~,.)/z 

( 2 )(w- K,.- 2)/2 

• K , + K t . e x p ( _ c % A Q i .  ) 

• 2 (v,.l 
x exp(k'etuA Q,) (K ' ) -k (Ktu)  -k" (15a) 

( 2 )-(k+k') 

X K' + Klu exp (-- ~lu A Q~) / 

• 

L F ( K '  - vs. ) F ( K I .  - vt.) 

r (K'  - vs.) r (K , .  - v,u) 
• 

F ( K '  - v~. - k) F ( K t .  - v~. - k') 

• r ( [ g '  + K , . -  2 k -  2k '  - 2]/2), 
where 

- -  0 0 A Q. - R. .  - Rzu. (15b) 

The anharmonic parameter for the initial state vanishes in Eq. (15a) because K' 
is written as follows: 

K '  = Ksu (O~su /Ohu)  2 = (hoos./he)s.x~u) (hm~ux~u/hohuxl.) 

= (hoos,/hm,, xtu) " (16) 

The parameters necessary for calculating the Franck-Condon factors are thus 
reduced to K',  Ktu , ~tu, and A Q,. It is a marked characteristic of our method 
that the anharmonic parameter is necessary only for the lower electronic state. 
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Table 1. Franck-Condon factors for the A 2 Z--* X z H transition in the NO molecule" 

Gub 0 1 2 

0 0.16139 0 .32236  0.28914 
(0.16345) a (0,32560) (0.29009) 

1 0.26290 O, 110856 0.01107 
(0_26351) (0.10683) (0.01279) 

2 0.23948 0 ,00046  0.15143 
(0.23900) (0.00064) (0. 15308) 

3 O, 16230 0 ,07098  0,07883 
(0.16159) (0.07209) (0.07667) 

4 0.09160 0 ,13611 0.00093 
(0.09110) (0.t3629) (0.00064) 

5 0.04572 0 ,13608  0.03340 
(0.04546) (0.13540) (0.03467) 

6 0.02094 0 .10011  0.08941 
(0.02082) (0.09928) (0.09007) 

7 0.00901 0 .06135  0./0781 
(0.00897) (0,06072) (0.107411 

8 0.0037 ~ 0 .03332  0.09180 
(0.00369) (0.03294) (0.09090) 

9 O.0O148 0 ,01665  0.06387 
(0.00147) (0,0 t 644) (0,06298) 

10 0.00058 0 ,00783  0.03892 
(0.00057) (0,00772) (0.03826) 

11 0,00022 0.00353 0.02 t 63 
(0.00022) (0,00347) (0.02121) 

12 0.00008 
(0.00008) 

13 0.00003 
(0.00003) 

0.15472 
(0.15275) 
0.17687 

(0A8377) 
0.05540 

(0.05176) 
0.03163 
0.03480) 

Eq, (15a) with the following parameters [9]: m,,=2371.3 cm -~, o)~uxs,=~4,48 cm -~, ~otu 
= 1903,9 cm -I, coluxtu= 13.97 cm -1, AQ,  =0.0871 A, %, =2,489 A 1 Ks~, = 136. 

b Vibrational quantum number in A 2 X state. 
~ Vibrational quantum number in X 2//state. 
a Values of the Franck-Condon factor, taken from [9], are given in parentheses. 

5. Results and Discussion 

In o rde r  to examine  the va l id i ty  of  the present  method ,  we first ca lcula te  
F r a n c k - C o n d o n  factors for the A2Z ~ X 2 H  t r ans i t ion  in the  N O  molecule  using 
Eq. (15a). Assuming  a M o r s e  poten t ia l ,  O r t e n b e r g  has  ca lcu la ted  the F r a n c k -  
C o n d o n  factors for this t r ans i t ion  by the numer ica l  integrat ion.  The present  
results  ob ta ined  using the same p a r a m e t e r  values as used by Or t enbe rg  are  given 
in Tab le  1, together  with the prev ious  results. The  F r a n c k - C o n d o n  factors are in 
g o o d  agreement  with those  ca lcu la ted  by  the numer ica l  in tegrat ion.  We not ice  
tha t  Eq. (15a) ob ta ined  with  the a p p r o x i m a t e  po ten t i a l  Eq. (13a) is app l i cab le  
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Fig. J. Dependence o f  re la t ive F r a n c k - C o n d o n  factors on displacement.  Results ob ta ined  using Eq. (15 a) 
w i th  the fo l l ow ing  parameters :  col, = 3063 cm-  1 cos, = 3 t 30 cm-  1 ~l, = 0.7 t 4 / ~ -  1 col, x l  ~ = 9.2 cm-  1. 

F ~ (0, v~,): A (2, = - 0.0343 .~. F(0,  v~,) I:  3 Q,  --- - 0.0269 A. F(0, v~,) H:  A Q,  = - 0.0416 fk. F(0, vz, ) IH :  
~J Q,  = - 0.0490 A. F (0, v~,) IV :  A Q,  = - 0 .0563 /L  

even to the cases in which the vibrational quantum numbers in the initial electronic 
state are fairly large. 

It is obvious from Eq. (15a) that for K ' = K l u ,  the Franck-Condon factor 
satisfies the following relation. 

F(vs~,, vl~,; A Qu) = F(vl, ,  vs~,; - A Q~,) 

That is to say, the Franck-Condon factors, F(v~,, vl~), and F(vlu, v~,), are equal, 
when the displacements are equal in magnitude and opposite in sign. 

In Figs. 1, 2, and 3, we display the dependence of the Franck-Condon factors 
on the vibrational quantum numbers of the final state and, at the same time, on 
the displacements, vibrational frequencies, and anharmonic parameters. We 
choose the C-H totally symmetric mode in benzene as a relevant mode and vary 
the parameter values around the reference ones corresponding to the T 1 ~ S  0 
transition. From these figures we can remark the following points about the 
Franck-Condon factors of the Morse function. 

1) The Franck-Condon factor depends on the displacement in a monotonous 
manner (see Fig. 1). 

2) Both the decrease in the initial state (see Fig. 2a) and the increase in the 
final state (see Fig. 2d) of the vibrational frequency strongly influence the Franck- 
Condon factor in a similar way. On the other hand, the increase in the initial 
state (see Fig. 2b) and the decrease in the final state (see Fig. 2c) affect the Franck- 
Condon factor in a complicated manner. 

3) The variation of the anharmonic parameter from 5.2 to 14.2 does not 
produce a significant effect on the Franck-Condon factor (see Figs. 3a and 3b). 
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Fig. 2a. Dependence of relative Franck-Condon factors on the vibrational frequency in the initial state. 
Results obtained using Eq. (15 a) with the following parameters: col, = 3063 cm- 1, A Q, = - 0.0343 A, cq. 
= 0.714 A- 1, ~ol, xt ~ = 9.2 cm- 1. F o (0, vtu): co~. = 3130 cm- 1. F (0, v~u ) I: co, u = 3082 cm- 1. F(0, vt, ) II: 

~o~ = 3036 cm- 1. F(0, vlu ) III: co~u = 2990 cm- 1. F(0, v,u) IV: ~os, = 2944 cm- 1 

Fig. 2b. Dependence of relative Franck-Condon factors on the vibrational frequency in the initial state. 
Results obtained using Eq. (15 a) with the following parameters: rot, = 3063 cm -1, A Qu = -0.0343 ,~, cq, 
= 0.714 A -  1, ogt~ xl~ = 9.2 cm- 1. F o (0, vl~): ~os, = 3 1 3 0  cm- 1. F (0, vl~ ) I: cos~ = 3156  cm- 1. F o (0, vl~ ) II: 
co~=3174 cm -1. F(O,v~,) III: cos.=3210 cm -1. F(0, vl, ) IV: ~os.=3321 cm -1. F(O, vsl,) V: ~ .  

= 3450 cm- 1 

Th i s  means  tha t  the F r a n c k - C o n d o n  factor  is ra ther  insensi t ive to the var ia t ion  
of  the value of  the a n h a r m o n i c  p a r a m e t e r  a r o u n d  the reference value. On  the 
o ther  hand,  the var ia t ion  of  the v ib ra t iona l  f requency gives a re la t ively r e m a r k a b l e  
effect on  the F r a n c k - C o n d o n  factor.  

W e  will now calcula te  the in te rsys tem cross ing ra te  f rom the v ibra t ionless  
level of  the 3B1, s ta te  to the g r o u n d  s tate  in benzene,  using Eqs. (6) and  (8) for the 
non- rad i a t i ve  t r ans i t ion  ra te  and  Eqs. (12b) and (15a) for the F r a n c k - C o n d o n  
factor  of  the M o r s e  potent ia l .  W e  cons ider  the b2, C - C  s t re tching m o d e  ((062, 
= 1 313 cm -1) as the p r o m o t i n g  mode.  W e  use the same p a r a m e t e r  values as 
those  used by  Bur land  and  R o b i n s o n  except  for a n h a r m o n i c  pa rame te r s  of  the 
C - H  to ta l ly  symmet r i c  mode.  They  ana lyzed  the phosphorescence and fluores- 
cence intensi t ies  of  benzene  in the  crys ta l  phase  and  found a value  of  (2) 1 x 1 
= 12.6 c m -  1 for the a n h a r m o n i c  p a r a m e t e r  of  the C - H  m o d e  in the g round  state. 
The  analysis  of  the infrared spec t ra  by  H e n r y  and S iebrand  suggests the value of  
(01x 1 = 9 . 2  cm -1. W e  feel tha t  the  la t ter  is better .  The a n h a r m o n i c  p a r a m e t e r  
for the C - C  b rea th ing  m o d e  is found  to be (02 x2 = 1.28 c m -  ~ in crystal  phase  
and  (02 x 2 = 0.98 c m - 1  in gas phase  by Bur land  and  Robinson .  These  values are  
fair ly small ,  so that ,  in our  ca lcula t ion ,  the anha rmon ic i t y  of  the C - C  b rea th ing  
m o d e  is neglected.  
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Fig. 2c. Dependence  of relative F r a n c k - C o n d o n  factors on the  v ibra t ional  f requency in the  final state. 
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Fig. 2d. Dependence  of relative F r a n c k - C o n d o n  factors on the  vibra t ional  f requency in the final state. 
Resul ts  ob ta ined  us ing  Eq. (15 a) with the following paramete rs :  oJs. = 3130 c m -  !, A Q.  = - 0.0343 A, ch. 
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Fig. 3 a. Dependence  of relative F r a n c k - C o n d o n  factors on a n h a r m o n i c  parameters .  Resul ts  ob ta ined  
us ing  Eq. (15 a) with the  following pa ramete r s :  (o~, = 3130 c m -  1, cot. = 3063 c m -  1, A Q~ = - 0.0343 ~.  
F ~ (0, vt~): (ot~ xl .  = 9.2 c m -  1. F(0, vl. ) I: e)l.Xl~ = 8.2 c m -  1. F(0, vz.) II: o)t~xl~ , = 7.2 c m -  1. F(0, vl~) III: 

o)t~,x~. = 6.2 cm  1 F(0, vt. ) IV: (o~xz.  = 5.2 c m -  1 

Fig. 3b. Dependence  of relative F r a n c k - C o n d o n  factors on a n h a r m o n i c  parameters .  Resul ts  ob ta ined  
us ing Eq. ( 1 5 a ) w i t h  the following paramete rs :  cos. = 3130 cm -1, (0 t .=3063 cm -1, AQ~,=-0.343 ~. 
F ~ (0, vtu):e)lu xt .  = 9.2 c m -  1. F(0, vtt,) I: e)lu x l .  = 10.2 c m - ,  F(0, vlu) II: (otu xl .  = 11.2 c m -  1. F(O, vt~,) III: 

COluXlu = 12.2 c m -  1. F(O, vlu ) IV: (Ol,Xl~ = 13.2 c m -  1. F(O, vt~,) V: COluXl. = 14.2 c m -  1 
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Table 2, Contributions of the energy distributions in the final electronic state to the total non-radiative 
transition rate". Case A: Harmonic oscillator approximation b 

CH-T, ~ CC-T~ Out-of-plane 
Wr~,so (sec- 1) 

vl ](vii0>[ za Vz I<v210>i 2~ I '[AE(bzo)] f 

8 5.29 x 10 -16 

7 1.33 x 10-14 

6 1.87 x 10-12 

5 5.341 10 -1~ 

1 3.53 x 10 -1 6.301 10 -3 1.771 10 -1~ 
2 2.021 10 - I  3.801 10 -2 6.08 x 10 -a~ 
3 8.14 x 10 -1 2.53 x 10 -1 1.63 x 10 -9 

3 8.14 x 10 -a 9.31 x 10 -4 1.51• -1~ 
4 2.60 x 10 -z 5.3l x 10 -3 2.75 x 10-1~ 
5 6.99 x 10 -3 3.20 x 10 .2 4.45 x 10-10 
6 1.641 10 -3 2.101 I0 - I  6.861 10 -9 

4 2.60 x 10 -z  2.60 x 10 -s  1.89 x 10-1~ 
5 6.99 x 10 -3 1.41 x 10 .4  2.75 x 10 - l ~  
6 1.641 10 -3 7.92• 10 -4 3.641 10 -1~ 
7 3.46 x 10 .4 4.51 x 10 .3 4.37 x 10 -1~ 
8 6.59 x 10 -s  2.71 x 10 -z  5.00 x 10-1~ 
9 1.17 x 10-s 1.75 x 10-1 5.73 x 10- lo 

10 1.93 x 10 .6 1.48 7.99 x 10-1~ 

3 8.14 x 10 .2 2.72 x 10 -8 1.77 x 10 - l ~  
4 2.60110 -2 1.43110 7 2.98110-1o 
5 6.99110 -3 7.65110 7 4.28110-1o 
6 1.64 x 10 -3 4.12 x 10 -6 5.40 x 10-1~ 
7 3.46 x 10 -4 2.21 x 10 - s  6.11 x 10 - I ~  
8 6.59 x l0 - s  1.2I • I0 -4 6.38 x i 0 - : ~  
9 1.17 x t0 -s  6.761 l0 -4 6.32 x 10 -1~ 

10 1.93 x 10 -6 3.82 x 10 -3 5.90 x 10-x~ 
11 3.00 X 1 0  - 7  2.28 x 10 -2 5.46 x 10 -1~ 
12 4.41 x l0 - s  1.47 x 10 -1 5.18 • 10 -1~ 
13 6.20x 10 .9 1.19 5.90x 10 - l ~  

Total 1.89 x 10 - s  

a The contributions smaller than 2% of the most effective one (corresponding to the most probable 
path) are neglected. 

b Every vibrational wavefunctions, C - H  and C-C  totally symmetric stretching mode and bz~ out of 
plane mode, are approximated by harmonic oscillator wavefunctions. 

c T~ = carbon or hydrogen totally symmetric stretching mode. 
d Franck-Condon factors calculated by using Eq. (16) in reference [10] with the following parameters: 

colSo= 3 063 cm - l ,  o)1 r~ = 3  130 cm - I ,  AQ1 = -0 ,034 ,~, A E=29.658 cm z 
e Franck-Condon factors calculated by using Eq. (16) in reference [10] with the following parameters: 

o)z s~ = 990 cm-  1, ( .o2TI  = 923 cm-  1, A Q2 = 0.07l A. 
e I [A E(b2e)~ = (2~I/2/cos~ I '  [A E(b2a)]. 

C o m p a r i n g  T a b l e  2 w i t h  T a b l e  3, w e  n o t i c e  t h a t  t h e  a n h a r m o n i c i t y  r e s u l t s  

in  a n  i n c r e a s e  b y  a n u m e r i c a l  f a c t o r  ~ 3.7 x 103 in  t h e  c a l c u l a t e d  n o n - r a d i a t i v e  

t r a n s i t i o n  ra te .  I t  s h o u l d  b e  a l s o  n o t i c e d  t h a t ,  o w i n g  to  t h e  a n h a r m o n i c i t y ,  t h e  

C - H  t o t a l l y  s y m m e t r i c  m o d e  b e c o m e s  m o r e  e f fec t ive  a s  t h e  a c c e p t i n g  m o d e .  

T h e  v i b r a t i o n a l  q u a n t u m  n u m b e r s  o f  t h e  C - H  t o t a l l y  s y m m e t r i c  a n d  t h e  C - C  

b r e a t h i n g  m o d e s  in t h e  f ina l  s t a t e  c o r r e s p o n d i n g  t o  t h e  m o s t  p r o b a b l e  p a t h  

a r e  vl = 7, v~ ~ 6 f o r  t h e  c a s e  o f  t h e  h a r m o n i c  o s c i l l a t o r  a p p r o x i m a t i o n  a n d  

v 1 = 8, v z = 4 f o r  t h e  c a s e  o f  t h e  M o r s e  o s c i l l a t o r  a p p r o x i m a t i o n .  
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Table 3. Contributions of the energy distributions in the final electronic state to the total non-radiative 
transition rateL Case B: Morse oscillator approximation b 

CH-T~ c CC-T~ Out-of-plane 
Wr~so(Sec- 1) 

vl i<vlI0}122 v2 i<v210> 2~ I'[AE(b2o)] e 

9 1.057 • 10-12 0 3.29 x 10-1 3.26 x 10-2 1.70 • 10 -6 
1 3.53 x 10 -1 2.14• -1 1.19 • 10 -s  

8 1.854• 10-11 1 3.53• 10-1 1.35• 10 -3 1.32• -6 
2 2.02• -1 6.92• 3 3.88• 
3 8.14• -1 4.22• -2 9.54• 6 
4 2.60• 10 -1 2.83 x 10 -1 2.041 10 -5 

7 3.455110 -1~ 2 2.02• -1 4.72• -s  4.91• v 
3 8.14• -2 2.63x10 -~ l . l l x l 0  6 
4 2.60 • t0 .2 1.47 • 10 -3 1.98 x 10 6 
5 6.99 x 10 -3 8.58 • 10 -3 3.12 x t0 -6 
6 1.641 10 -3 5.21 • 10 .2 4.41 x 10 6 
7 3.46110 -4 3.57• -1 6.37• 6 

6 6.856110 -9 5 6.99• -3 5.54110 -5 3.98110 ~7 
6 1.64 x 10 .3 3.05 • 10 -4 5.15 • 10 v 
7 3.64 • 10 -4 t.73 x 10 -3 6.15 x 10 -3 
8 6.59x10 -5 9.94110 -3 6.72• 7 
9 1.171 10 -5 6.20• 10 -2 7A6• 10 7 

10 1.93• 10 .6 4.321 10 -1 8.55• 10 7 

Total 7.00 x t0- 5 

The contributions smaller than 2% of the most effective one (corresponding to the most probable 
path) are neglected. 

b C-H totally symmetric stretching mode is approximated by the Morse oscillator wavefunction. 
Other modes, the C-C totally symmetric mode and bzo out plane mode, are approximated by 
harmonic oscillator wavefunctions. 

c T~ = carbon or hydrogen totally symmetric stretching mode. 
d Franck.Condon factors calculated by using Eq. (15a) with the following parameters: o)So = 3063 cm_ 1, 

o9~ r~ cm-1, ogS~176 cm-1, ~1 =0.714 A -1, AQI= -0.034 ik, AE=29658 cm -1. 
~ Franck-Condon factors calculated by using Eq. (16) in Ref. [10] with the following parameters: 

~oz s~ = 990 cm 1, a~2rl = 923 cm 1, A Q2 = 0.071/~. 
f I [A E(b2o)] = (2nl/2/o9 s~ I' [A E(b2o)]. 

U s i n g  the  resu l t s  o f  T a b l e 3  a n d  a s s u m i n g  Cr l , so=l .6x lO- l cm-1  [1]  

we m a y  ca l cu l a t e  t he  a b s o l u t e  ra te  for  t he  3B1,---, 1A~o i n t e r s y s t e m  c r o s s i n g  in 

the  b e n z e n e  molecu le .  O u r  n u m e r i c a l  resu l t s  t o g e t h e r  wi th  p r e v i o u s  o n e s  a re  

s u m m a r i z e d  in T a b l e  4. T h e  va lue  in p a r e n t h e s e s  c o r r e s p o n d s  to  t he  ra te  o b t a i n e d  

c o n s i d e r i n g  o n l y  the  m o s t  p r o b a b l e  pa th .  T h e  n u m e r i c a l  resu l t  o b t a i n e d  us ing  

the  m o s t  p r o b a b l e  p a t h  m e t h o d  is a b o u t  a f o u r t h  p a r t  o f  the  va lue  o b t a i n e d  

us ing  the  p r e s e n t  m e t h o d .  T h e  p r e d i c t e d  resu l t s  in T a b l e  4 s h o u l d  be  c o m p a r e d  

w i t h  t he  e x p e r i m e n t a l  r e su l t  Wrl_,So_~2.4 x 10 -2, A c c o r d i n g  to  N i t z a n  a n d  

J o r t n e r  [2] ,  t he  i n c l u s i o n  o f  f r e q u e n c y  c h a n g e s  for  o t h e r  m o d e s  inc reases  t he  

ra te  by  an  o r d e r  o f  a b o u t  3. C o n s i d e r i n g  th is  effect, we  feel t h a t  o u r  resu l t  is in 

b e t t e r  a g r e e m e n t  w i t h  the  e x p e r i m e n t a l  o n e  t h a n  a n y  o t h e r  c a l cu l a t ed  resu l t  

o b t a i n e d  p rev ious ly .  
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Table 4. Calculated intersystem crossing rate in benzene 

Rate (sec -1) 

Present work 7.00 x 10 -5 
(2.04 x 10- s), 

Nitzan and Jortner  [2] 7.2 • 10 -7 
Burland and Robinson [1] 9.04 x 10- 5 
Fischer and Schneider [11] 7.4 x 10 -4 
Experiment [1] 2.4 x 10 -2 

" The value obtained from the most probable 
path method. 

In this paper we have neglected the displacement for the e20 mode. Fischer 
and Schneider [11] have calculated the rate taking into account the displacement 
of A Q = 0.021 A for the e20 C-C stretching mode (1606 cm- 1). The inclusion of 
the displacement augments the rate by a numerical factor ~ 40. However, the 
magnitude of the displacement for the e2o mode depends strongly upon solvents 
and cannot been determined definitely. The semi-empirical calculation by Nieman 
[12] shows that the displacement is less than 0.01 A. 
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